Abstract

For an imaginary quadratic number field K and an odd prime number l, the anti-cyclotomic Z l -extension of K is defined. For primes p of K, decomposition laws for p in the anti-cyclotomic extension are given. We show how these laws can be applied to determine if the Hilbert class field (or part of it) of K is Z l -embeddable. For some K and l, we find explicit polynomials whose roots generate the first step of the anti-cyclotomic extension and show how the prime decomposition laws give nice results on the splitting of these polyniomials modulo p. The article contains many numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.