Abstract
Ramanujan sums (RS) and their Fourier transforms have attracted more and more attention in signal processing in recent years. Due to their non-periodic and non-uniform spectrum, RS are widely used in low-frequency noise processing, Doppler spectrum estimation and time-frequency analysis. However, the traditional method for calculating RS values is rather complex since it requires two numbers’ factorization in two arithmetic functions. For a length-n vector, its Ramanujan-Fourier transform usually involves a series of RS values which will occupy O(n2) memory units. Thus, in this paper an approach based on prime-composition is proposed to reduce the complexity of RS calculation to O(n2). Meanwhile, the complexity of Ramanujan-Fourier transform can be further reduced from O(n2) to O(nln(ln(n))).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.