Abstract

The human cone visual system maintains sensitivity over a broad range of illumination, from below 1 troland to 1,000,000 trolands. While the cone photoreceptors themselves are an important locus for sensitivity regulation-or light adaptation-the degree to which they contribute in primates remains unclear. To determine the range of sensitivity regulation in the outer retina, the temporal dynamics, neural gain control, and response range compression were measured in second-order neurons, the H1 horizontal cells, of the macaque retina. Situated at the first synapse in the retina, H1 cells receive input from a large population of cones. Lee et al. have previously shown that sensitivity regulation in H1 cells is both cone type-specific and spatially restricted. The sensitivity regulation seen in H1 cells at moderate illuminances thus takes place before the summation of cone signals in these cells, and the data establish the H1 cell as a convenient locus for analyzing cone signals. In the present study, cone-driven responses of primate H1 cells to temporally modulated sine-wave stimuli and to increment pulses were measured at steady levels of 1-1,000 trolands. The H1 cell gave a modulated response to sine-wave stimuli and hyperpolarized to increment pulses with overshoots at stimulus onset and offset. The temporal amplitude sensitivity function was primarily low-pass in shape, with a small degree of low-frequency roll off and a resonance shoulder near 40 Hz. A model incorporating a cascade of first-order filters together with an underdamped second-order filter could describe both temporal sinusoidal and pulse hyperpolarizations. Amplitude sensitivity was estimated from both pulse and sine-wave data as a function of the steady adaptation level. Sensitivity at low light levels (1 troland) showed a slowing in temporal dynamics, indicating time-dependent sensitivity regulation. Sensitivity was reduced at light levels above approximately 10 trolands, reflecting both response range compression and neural gain control. Thus the outer retina is a major locus for sensitivity regulation in primates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call