Abstract

Recent thermodynamic temperature measurements at PTB with dielectric-constant gas thermometry were performed up to 140 K. Particular care was taken to check for possible systematic sources of errors by repeating experiments applying two new measuring capacitors and both helium and neon as working gases. The development of a new method for determining the effective compressibility of the new capacitors as a function of temperature has decreased the uncertainty significantly. The combination of the recently obtained results with former values of thermodynamic temperature, corrected using new thermodynamic input data, has yielded a consistent dataset in the range from 2.5 K to 38 K as well as at 84 K, 120 K, 130 K, and 140 K. This dataset is in good agreement with the newest results of acoustic gas thermometry, which has quite different sources of uncertainty compared with dielectric-constant gas thermometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.