Abstract

Two types of linker subunits (linkers 1 and 2) of the extracellular hemoglobin of Tylorrhynchus heterochaetus have been isolated as disulfide-linked homodimers by C18 reverse-phase chromatography. These subunits constituted 6 and 13%, respectively, of total protein area on the chromatogram. The complete amino acid sequences of linkers 1 and 2 were determined by automated Edman sequencing of the peptides derived by digestions with lysyl endopeptidase, trypsin, chymotrypsin, Staphylococcus aureus V8 protease, pepsin, and endoproteinase Asp-N. The linker 1 consisted of 253 amino acid residues (the calculated molecular mass, 28,200 Da), while the linker 2 consisted of 236 residues (26,316 Da). The two chains showed 27% sequence identity. The amino acid sequences of Tylorrhynchus linkers 1 and 2 also showed 23-27% homology with the recently determined sequence of a linker chain of Lamellibrachia hemoglobin (Suzuki, T., Takagi, T., and Ohta, S. (1990) J. Biol. Chem. 265, 1551-1555). In the three linker chains, half-cystine residues were highly conserved; 8 out of 13 residues are identical, suggesting that such residues would contribute to the formation of intrachain disulfide bonds essential for the protein folding of the linker polypeptides. Based on the exact molecular masses of the linker and the heme-containing subunits, the molar ratios estimated for the subunits and the minimum molecular weights per 1 mol of heme, a model is proposed for the subunit structure of the Tylorrhynchus hemoglobin, consisting of 216 polypeptide chains, 192 heme-containing chains, and 24 linker chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.