Abstract

The alpha 2-macroglobulin (alpha 2M) receptor complex as purified by affinity chromatography contains three polypeptides: a 515-kDa heavy chain, an 85-kDa light chain, and a 39-kDa associated protein. Previous studies have established that the 515/85-kDa components are derived from a 600-kDa precursor whose complete sequence has been determined by cDNA cloning (Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gassepohl, H., and Stanley, K. (1988) EMBO J. 7,4119-4127). We have now determined the primary structure of the human 39-kDa polypeptide, termed alpha 2M receptor-associated protein, by cDNA cloning. The deduced amino acid sequence contains a putative signal sequence that precedes the 323-residue mature protein. Comparative sequence analysis revealed that alpha 2M receptor-associated protein has 73% identity with a rat protein reported to be a pathogenic domain of Heymann nephritis antigen gp 330 and 77% identity to a mouse heparin-binding protein termed HBP-44. The high overall identity suggests that these molecules are interspecies homologues and indicates that the pathogenic domain, previously thought to be a portion of gp 330, is in fact a distinct protein. Further, the 120-residue carboxyl-terminal region of alpha 2M receptor-associated protein has 26% identity with a region of apolipoprotein E containing the low density lipoprotein receptor binding domain. Pulse-chase experiments revealed that the newly formed alpha 2M receptor-associated protein remains cell-associated, while surface labeling experiments followed by immunoprecipitation suggest that this protein is present on the cell surface forming a complex with the alpha 2M receptor heavy and light chains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call