Abstract

Copper resistance in yeast is controlled by the CUP1 locus. The level of resistance is proportional to the copy number of this locus, which can be found in up to 15 tandemly iterated copies. To elucidate the molecular mechanisms controlling the amplification and expression of the CUP1, locus, we determined its full nucleotide sequence. We have also identified and mapped two transcription units within the basic amplification unit of CUP1 in laboratory yeast strains. One of those transcription units is inducible by copper and encodes a low molecular weight copper binding protein--copper chelatin. The increased production of chelatin, due to both gene amplification and induction of transcription, leads to increased resistance of yeast cells to copper ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.