Abstract

Rapid, voltage-dependent potentiation of skeletal muscle L-type calcium channels requires phosphorylation by cAMP-dependent protein kinase (PKA) anchored via an A kinase anchoring protein (AKAP). Here we report the isolation, primary sequence determination, and functional characterization of AKAP15, a lipid-anchored protein of 81 amino acid residues with a single amphipathic helix that binds PKA. AKAP15 colocalizes with L-type calcium channels in transverse tubules and is associated with L-type calcium channels in transfected cells. A peptide fragment of AKAP15 encompassing the RII-binding domain blocks voltage-dependent potentiation. These results indicate that AKAP15 targets PKA to the calcium channel and plays a critical role in voltage-dependent potentiation and regulation of skeletal muscle contraction. The expression of AKAP15 in the brain and heart suggests that it may mediate rapid PKA regulation of L-type calcium channels in neurons and cardiac myocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.