Abstract

Knockout and complement mutants of mannitol-1-phosphate dehydrogenase (MPD) and mannitol dehydrogenase (MTD) were constructed to probe the roles of both enzymes in the mannitol metabolism and multi-stress tolerances of entomopathogenic fungus Beauveria bassiana. Compared with wild-type and complement mutants, ΔBbMPD lost 99.5% MPD activity for reducing fructose-6-phosphate to mannitol-1-phosphate while ΔBbMTD lost 78.9% MTD activity for oxidizing mannitol to fructose. Consequently, mannitol contents in mycelia and conidia decreased 68% and 83% for ΔBbMPD, and 16% and 38% for ΔBbMTD, accompanied by greatly enhanced trehalose accumulations due to 81-87% decrease in their neutral trehalase expression. Mannitol as mere carbon source in a nitrate-based minimal medium suppressed the colony growth of ΔBbMTD instead of ΔBbMPD, and delayed more conidial germination of ΔBbMTD than ΔBbMPD. Based on median lethal responses, conidial tolerances to H(2) O(2) oxidation, UV-B irradiation and heat stress at 45°C decreased 38%, 39% and 22% in ΔBbMPD, and 18%, 16% and 11% in ΔBbMTD respectively. Moreover, ΔBbMPD and ΔBbMTD lost 14% and 7% of their virulence against Spodoptera litura larvae respectively. Our findings highlight the primary roles of MPD and MTD in mannitol metabolism and their significant contributions to multi-stress tolerances and virulence influential on the biocontrol potential of B.bassiana.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.