Abstract

Power system restoration following a massive or complete blackout starts with energizing the primary restorative transmission system. During this primary restoration process, unexpected overvoltage may happen due to nonlinear interaction between the unloaded transformer and the transmission system. In the case of the Myanmar electric power system, there are so many wide outage experiences, including complete blackout cases, caused by 230kV line faults and so on. Consequently, Myanmar's system operators have been well trained to deal with wide blackouts. Howver, system blackout restoration has been conducted by relying on the experience of only a few specialists. So, more scientific analysis is required to meet the requirements necessary to ensure fast and reliable system restoration. This paper presents analytical results on the primary restorative transmission system of Myanmar, focusing on the problems during the early restoration process. Methodologies are presented that handle load pick-up, terminal voltage and the reactive capability limitation of black-start generators to compensate the Ferranti effect. Static and dynamic simulation with the PSSolution and EMTDC programs respectively for the six cases are performed in order to select the primary restorative transmission lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.