Abstract

Given its biocompatibility, rheological, and physiological properties, hyaluronic acid (HA) has become a biomaterial of increasing interest with multiple applications in medicine and cosmetics. In recent decades, microbial fermentations have become an important source for the industrial production of HA. However, due to its final applications, microbial HA must undergo critical and long purification processes to ensure clinical and cosmetic grade purity. Aqueous two-phase systems (ATPS) have proven to be an efficient technique for the primary recovery of high-value biomolecules. Nevertheless, their implementation in HA downstream processing has been practically unexplored. In this work, polyethylene glycol (PEG)–citrate ATPS were used for the first time for the primary recovery of HA produced with an engineered strain of Streptococcus equi subsp. zooepidemicus. The effects of PEG molecular weight (MW), tie-line length (TLL), volume ratio (VR), and sample load on HA recovery and purity were studied with a clarified fermentation broth as feed material. HA was recovered in the salt-rich bottom phase, and its recovery increased when a PEG MW of 8000 g mol−1 was used. Lower VR values (0.38) favoured HA recovery, whereas purity was enhanced by a high VR (3.50). Meanwhile, sample load had a negative impact on both recovery and purity. The ATPS with the best performance was PEG 8000 g mol−1, TLL 43% (w/w), and VR 3.50, showing 79.4% HA recovery and 74.5% purity. This study demonstrated for the first time the potential of PEG–citrate ATPS as an effective primary recovery strategy for the downstream process of microbial HA.

Highlights

  • The global hyaluronic acid (HA) market size was valued at USD 9.1 billion in 2019, and it is expected to rise mainly due to increasing aesthetic consciousness and aging populations (Grand View Research 2020)

  • This study explored for the first time the use of polyethylene glycol (PEG)– citrate Aqueous twophase systems (ATPS) for the primary recovery and partial purification of HA produced in S. zooepidemicus

  • Since negligible amounts of HA were detected in the PEG-rich top phase, further analyses were focused on HA recovery in the bottom phase

Read more

Summary

Introduction

The global hyaluronic acid (HA) market size was valued at USD 9.1 billion in 2019, and it is expected to rise mainly due to increasing aesthetic consciousness and aging populations (Grand View Research 2020). HA is a natural, high molecular weight (­105 to 1­ 07 Da) linear polysaccharide (Toole 2002). It belongs to the class of glycosaminoglycans and is formed by repeating units of d-glucuronic acid and d-N-acetylglucosamine, linked by alternate β-1,4 and β-1,3 glycosidic bonds (Stick and Williams 2009). HA is a main component of the extracellular matrix (ECM), making it a ubiquitous substance. It is found in high concentrations in connective tissue, such as hyaline cartilage and skin dermis, and specialised body fluids, like the vitreous humour of the eye and synovial fluid (Falcone et al 2006). HA plays several roles in the body, such as providing a supportive structure for the cells, controlling tissue hydration and repair, viscoelasticity, and cellular signalling (Cowman and Matsuoka 2005)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call