Abstract
The primary all- trans to 13- cis chromophore isomerization of the light driven chloride pump halorhodopsin has been studied by means of transient absorption spectroscopy in the visible and mid-infrared regime at a time resolution of better than 100 and 220 fs, respectively. The picosecond vibrational dynamics are dominated by two time constants, i.e., 2 and 7.7 ps in accordance with the biphasic decay of the retinal excited electronic state and electronic ground state formation with 1.5 and 6.6 ps. The transient vibrational spectra of the participating electronic states strongly suggest the existence of two distinct S 1 populations as a result of an early branching reaction. It is shown that the 13- cis product is formed with the fast time constant, whereas the all- trans educt state is repopulated via both time constants. Concomitant protein dynamics are indicated by spectral changes on a similar time scale in the amide region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.