Abstract

In order to describe the central relations of both the afferent and efferent components of the VIIIth cranial nerve in one reptile, the methods of anterograde and retrograde axonal transport and anterograde degeneration were used to study the vestibular and cochlear projections and the efferent system of this nerve in Varanus exanthematicus. On the basis of cresyl violet and Klüver-Barrera staining, five vestibular nuclei, four cochlear nuclei, and two clusters of small cells which could not be designated as strictly auditory or vestibular are distinguished. The vestibular nuclei include the nucleus dorsolateralis, nucleus ventrolateralis, nucleus tangentialis, nucleus ventromedialis, and nucleus descendens. The well-developed cochlear nuclear complex includes the nucleus angularis, nuclei magnocellulares medialis and lateralis, and nucleus laminaris. The two cell clusters are located dorsolaterally in the brainstem just ventrolateral to the acoustic tubercle. The primary afferent vestibular fibers coursing in the anterior VIIIth nerve root distribute to the ventral portions of all vestibular nuclei except nucleus ventromedialis, whereas the fibers coursing in the posterior root project to the dorsal portions of these nuclei. In nucleus ventromedialis fibers of both roots do not segregate into ventral and dorsal portions. Other targets of the vestibular fibers are the two cell clusters, the granular layer of the ipsilateral cerebellum, the reticular formation, and the descending trigeminal tract and its nucleus. The primary cochlear fibers coursing in the posterior root terminate in nucleus angularis, nuclei magnocellulares medialis and lateralis, and the inner cell strand of nucleus laminaris. The efferent system is, ipsi- and contralaterally in the brainstem, composed of ventral and dorsal cell groups that extend from the level of the principal abducens nucleus caudally where they overlap with the facial motor nucleus. The fibers, which originate from the contralaterally located efferent cells, course beneath the IVth ventricle to exit the brainstem on the ipsilateral side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.