Abstract
From a study of the u. v., visible, near i. r. and e. s. r. spectra induced by γ -irradiation at 77°K in glassy MTHF and in glassy MTHF containing various additives and from a study of controlled temperature increases on these spectra, the following conclusions are drawn. (1) The primary products of the radiolysis are electrons ( e - ) and positive ions ( MTHF + ) which undergo a rapid ion-molecule reaction to give O CH 3 radicals ( R ⋅). (2) e - can either be trapped in the glassy MTHF matrix or can be captured by either napththalene, ferric chloride, carbon tetrachloride, nitrous oxide or trans -stilbene if these substances are present. (3) The e - T are bleachable by light or heat and disappear independently of the radicals R⋅ without either augmentation of R⋅ or the production of any new radical species. (4) e - T and R⋅ disappear thermally and independently by second-order reactions, the rate constants being K e - + e - (M -1 S -1 ) = 10 12⋅4±1⋅1 exp ─ [0⋅85 ± 0⋅10 kcal/mole/ R ( T ─ 75)] and K R˙ + R˙ (M -1 S -1 ) = 10 13⋅3±1⋅4 exp ─ [1⋅20 ± 0⋅15 kcal/mole/ R ( T ─ 75)]. These rate expressions suggest that both reactions are diffusion controlled at low temperatures in the glassy phase. (5) The kinetics of the thermal bleaching of e - T indicate that the electrons migrate distances of about 150 Å from their parent positive ions before being trapped in the matrix. (6) The effect of FeCl 3 in reducing the formation of e - T at 77°K and its lack of effect on the thermal bleaching of e - T suggests that the reaction e - + FeCl 3 → FeCl 2 + Cl - only occurs before the electron is thermalized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.