Abstract
Net primary productivity and organic matter flow of a mangrove-dominated wetland was estimated by following production and detritus dynamics in a tidal pond in north west Hong Kong in 1986–1988 (9.1 ha). Total productivity was 12.47 t dry wt ha−1 yr−1, of which >90% was from emergent macrophytes (the mangroveKandelia candel and the reedPhragmites communis). High turbidity and high summer temperatures probably limited respective production by phytoplankton and benthic macroalgae (dominated byEnteromorpha crinata). Despite the high total productivity, little detritus was exported from the emergent macrophyte stands, due to the low inundation frequency. This created a net water column carbon deficit which was provided for by the high organic matter import (mean = 4.42 g ash free dry wt m−2 d−1) from the incoming water. This same sediment and particulate organic carbon input giving a high accretion rate of 1.7 cm yr−1 was probably also the force behind progressive dis-coupling of emergent macrophyte production from water column consumers. This resulted in a tendency to retain production in the emergent macrophyte stands while the water column community increasingly relied on allochthonous carbon. This shift from a net exporter to a net importer of carbon in landward wetlands is probably characteristic of the transition into nutrient-conservative terrestrial systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.