Abstract

Tropical estuaries are under increasing pressure worldwide from human impacts, but are poorly studied compared with temperate systems. This study examined a tropical macrotidal estuary, Darwin Harbour, in northern Australia, using a combination of direct measurements and literature values to determine the main sources of primary production and the sources of nutrients supporting growth. The main source of primary production was calculated to be the extensive area of fringing mangroves and resulted in a net autotrophic system ( P G: R = 2.1). Much of the carbon in the mangrove forests appears to be retained within the forests or respired, as the water column was also net autotrophic despite the carbon inputs. Phytoplankton were the second largest primary producer on a whole-of-harbour basis, with low biomass constrained by light and nutrient availability. The phytoplankton were likely to be nitrogen (N) limited, based on low N:phosphorus (P) ratios, low dissolved bioavailable N concentrations (ammonium (NH 4 +), nitrate (NO 3 −), urea), and evidence that phytoplankton growth in bioassays was stimulated by NH 4 + addition. The largest new source of N to the system was from the ocean due to higher N concentrations in the incoming tides than the outgoing tides. Atmospheric inputs via N fixation on the intertidal mudflats and subtidal sediments were substantially lower. The rivers feeding into the harbour and sewage were minor N inputs. Nitrogen demand by primary producers was high relative to available N inputs, suggesting that N recycling within the water column and mangrove forests must be important processes. Darwin Harbour is adjacent to the rapidly growing urban area of Darwin city, but overall there is no evidence of anthropogenic nutrient inputs having substantial effects on primary production in Darwin Harbour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call