Abstract

Abstract Recent discrepancies between geochemical and biological approaches for determining whether ocean ecosystems are net heterotrophic or net autotrophic have led to uncertainty in the net metabolic state of open ocean ecosystems. Geochemical approaches indicate that the oceans are net positive autotrophic, but direct observations based on short-term incubation techniques suggest that the ocean is in a state of net heterotrophy. One hypothesis for the apparent discrepancy is that net autotrophic production occurs in aperiodic “bursts,” which are superimposed on a more constant background state of net heterotrophy. Mixing events, which introduce new nutrients to the surface ocean, provide one mechanism for fueling such aperiodic bursts of net production. In conjunction with the Eddy Flux (E-Flux) program in the lee of the Hawaiian Islands during winter 2004–2005, we examined the relationship between photosynthesis and irradiance ( P vs. E ) in surface waters inside and outside of two cold-core, cyclonic eddies, and conducted five incubation experiments to examine the metabolic response of mixed-layer plankton communities to nutrient-rich deep-sea water additions. Our results showed that in the mixed layer, maximum rates of light-saturated photosynthesis, derived from photosynthesis–irradiance experiments were not significantly different inside vs. outside the eddies ( p =0.35 and 0.44 for E-Flux I and E-Flux III, respectively). Addition of nutrients to mixed-layer water showed that (1) gross primary production (GPP) became decoupled from a more constant rate of respiration and (2) net system metabolism shifted from approximate balance, or slight net heterotrophy, to a demonstrably net autotrophic system. From these results, we determined that the threshold GPP for net autotrophic production for the mixed layer of the study region was 1.65 mmol O 2 m −3 d −1 , which is consistent with previous estimates for the oligotrophic open ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.