Abstract

BackgroundA good in vitro model should approximate an in vivo-like behavior as closely as possible in order to reflect most likely the in vivo situation. Regarding renal physiology of different species, humans are more closely related to pigs than to rodents, therefore primary porcine kidney cells (PKC) and their subsequent cell strain could be a valid alternative to primary human cells for renal in vitro toxicology. For this PKC must display inherent characteristics (e.g. structural organization) and functions (e.g. transepithelial transport) as observed under in vivo conditions within the respective part of the kidney.ResultsWe carried out a comprehensive characterization of PKC and their subsequent cell strain, including morphology and growth as well as transporter expression and functionality. The data presented here demonstrate that PKC express various transporters including pMrp1 (abcc1), pMrp2 (abcc2), pOat1 (slc22a6) and pOat3 (slc22a8), whereas pMdr1 (abcb1) and pOatp1a2 (slco1a2) mRNA could not be detected in either the PKCs or in the porcine cortical tissue. Functionality of the transporters was demonstrated by determining the specific PAH transport kinetics.ConclusionsOn the basis of the presented results it can be concluded that PKC and to some extent their subsequent cell strain represent a valuable model for in vitro toxicology, which might be used as an alternative to human primary cells.

Highlights

  • A good in vitro model should approximate an in vivo-like behavior as closely as possible in order to reflect most likely the in vivo situation

  • Of the many human transporters known, at least the fully sequenced porcine transporters have a higher structural/amino acid identity to the human homologues than those of either mice or rats (Additional file 1: Figure S1, Additional file 2: Table S1). The latter is critical when kinetics as well as dynamics of given compounds that need active or passive transport across membranes are considered, as the higher the homology to the human transporter the higher the likelihood that transport affinity and capacity are similar in the human and porcine homologues for the compound. This assumption is supported by data available for OAT1 and to some extent for OAT3, whereas for other transporters insufficient data is available for comparison (Additional file 3: Table S2)

  • No signal could be obtained for pMdr1 and pOatp1a2 neither in the cells nor in the organ tissue preparations

Read more

Summary

Introduction

A good in vitro model should approximate an in vivo-like behavior as closely as possible in order to reflect most likely the in vivo situation. Regarding renal physiology of different species, humans are more closely related to pigs than to rodents, primary porcine kidney cells (PKC) and their subsequent cell strain could be a valid alternative to primary human cells for renal in vitro toxicology. For this PKC must display inherent characteristics (e.g. structural organization) and functions (e.g. transepithelial transport) as observed under in vivo conditions within the respective part of the kidney. In order to determine whether the expression of given transporters are hormone or substrate dependent, specific treatments were employed to detect differences in expression transporter levels

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call