Abstract

Photophysical properties of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin ( TMpyP 4) and its metallocomplexes M (II) TMpy P4 ( M = Zn , Cu , Ni , Co ) bound to natural DNA and synthetic poly-, oligo- and mononucleotides are considered with a primary emphasis placed upon intermolecular interaction of the photoexcited porphyrins with the nearest environment. Quenching of the fluorescent S 1 (but not triplet T 1) state due to guanine to porphyrin electron transfer is observed for TMpyP 4 intercalated between GC base pairs of the double-strand helixes, whereas in the case of TMpyP 4 complexed with guanosine monophosphate (GMP) both S 1 and T 1 states of the porphyrin are quenched. Furthermore, a dependence of the efficiency of TMpyP 4 triplet state quenching by the dissolved molecular oxygen from air on the porphyrin localization enables one to readily distinguish porphyrin groove binding mode from intercalation. Excited states of the TMpyP 4 complexes with transition metals, in spite of their very short lifetimes, also interact with nucleic acid components by means of an axial ligand binding/release to/from the metal. A possible structure of the five-coordinate excited complex (“exciplex”) formed in case of CuTMpyP 4 groove binding to some single- and double-strand polynucleotides is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.