Abstract

Steady-state fluorescence has been used to study the excited singlet state of ofloxacin (OFLX) in aqueous solutions. Fluorescence emission was found to be pH dependent, with a maximum quantum yield of 0.17 at pH 7. Two pKa*s of around 2 and 8.5 were obtained for the excited singlet state. Laser flash photolysis and pulse radiolysis have been used to study the excited states and free radicals of OFLX in aqueous solutions. OFLX undergoes monophotonic photoionization from the excited singlet state with a quantum yield of 0.2. The cation radical so produced absorbs maximally at 770 nm with an extinction coefficient of 5000 ± 500 dm3 mol−1 cm−1. This is confirmed by one-electron oxidation in the pulse radiolysis experiments. The hydrated electron produced in the photoionization process reacts with ground state OFLX with a rate constant of 2.0 ± 0.2 × 1010 dm3 mol−1 s−1, and the anion thus produced has two absorption bands at 410 nm (extinction coefficient = 3000 ± 300 dm 3 mol−1 cm−1) and at 530 nm. Triplet–triplet absorption has a maximum at 610 nm with an extinction coefficient of 11 000 ± 1500 dm 3 mol−1 cm−1. The quantum yield of triplet formation has been determined to be 0.33 ± 0.05. In the presence of oxygen, the triplet reacts to form both excited singlet oxygen and superoxide anion with quantum yields of 0.13 and ≤0.2, respectively. Moreover, superoxide anion is also formed by the reaction of oxygen with the hydrated electron from photoionization. Hence the photosensitivity due to OFLX could be initiated by the oxygen radicals and/or by OFLX radicals acting as haptens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.