Abstract

BackgroundHuman primary myeloma (MM) cells do not survive in culture; current in vitro and in vivo systems for growing these cells are limited to coculture with a specific bone marrow (BM) cell type or growth in an immunodeficient animal model. The purpose of the study is to establish an interactive healthy donor whole BM based culture system capable of maintaining prolonged survival of primary MM cells. This normal BM (NBM) coculture system is different from using autologous BM that is already affected by the disease.MethodsWhole BM from healthy donors was cultured in medium supplemented with BM serum from MM patients for 7 days, followed by 7 days of coculture with CD138-selected primary MM cells or MM cell lines. MM cells in the coculture were quantified using flow cytometry or bioluminescence of luciferase-expressing MM cells. T-cell cytokine array and proteomics were performed to identify secreted factors.ResultsNBM is composed of adherent and nonadherent compartments containing typical hematopoietic and mesenchymal cells. MM cells, or a subset of MM cells, from all examined cases survived and grew in this system, regardless of the MM cells’ molecular risk or subtype, and growth was comparable to coculture with individual stromal cell types. Adherent and nonadherent compartments supported MM growth, and this support required patient serum for optimal growth. Increased levels of MM growth factors IL-6 and IL-10 along with MM clinical markers B2M and LDHA were detected in supernatants from the NBM coculture than from the BM cultured alone. Levels of extracellular matrix factors (e.g., MMP1, HMCN1, COL3A1, ACAN) and immunomodulatory factors (e.g., IFI16, LILRB4, PTPN6, AZGP1) were changed in the coculture system. The NBM system protected MM cells from dexamethasone but not bortezomib, and effects of lenalidomide varied.ConclusionsThe NBM system demonstrates the ability of primary MM plasma cells to interact with and to survive in coculture with healthy adult BM. This model is suitable for studying MM-microenvironment interactions, particularly at the early stage of engagement in new BM niches, and for characterizing MM cell subpopulations capable of long-term survival through secretion of extracellular matrix and immune-related factors.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1892-7) contains supplementary material, which is available to authorized users.

Highlights

  • Human primary myeloma (MM) cells do not survive in culture; current in vitro and in vivo systems for growing these cells are limited to coculture with a specific bone marrow (BM) cell type or growth in an immunodeficient animal model

  • To fill the existing need, we developed a novel comprehensive in vitro coculture model—the normal bone marrow (NBM) system—that contains cell types of healthy donor BM, including immune cells, which are precultured with serum from MM patients before being used for coculture with primary MM plasma cells

  • After the healthy donor BM cells had been cultured for 7 days with patient serum, freshly obtained CD138-selected primary MM cells [25] were added to the cultures

Read more

Summary

Introduction

Human primary myeloma (MM) cells do not survive in culture; current in vitro and in vivo systems for growing these cells are limited to coculture with a specific bone marrow (BM) cell type or growth in an immunodeficient animal model. The purpose of the study is to establish an interactive healthy donor whole BM based culture system capable of maintaining prolonged survival of primary MM cells. This normal BM (NBM) coculture system is different from using autologous BM that is already affected by the disease. Almost all in vivo models that use human MM cells have performed studies in immunodeficient mice that fail to exhibit immune cell-driven tumor growth dynamics. Certain in vivo murine MM models such as the 5TMM model [19] or transgenic mouse models [20] have been successfully exploited for studying MMimmune cell interaction and immunotherapy [21, 22]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call