Abstract

Fibroblasts are the prevalent cell type and main source for extracellular matrix (ECM) in connective tissue. Depending on their origin, fibroblasts play a central role in non-pathological tissue remodeling and disease like fibrosis. This study examined the effect of established culture conditions of primary human fibroblasts, from different origins on the myofibroblast-like phenotype formation. We isolated primary human fibroblasts from aortic adventitia, lung, juvenile- and adult skin and investigated the expression levels of CD90, alpha smooth muscle actin (αSMA) and procollagen I under different concentrations of fetal calf serum (FCS) and ascorbic acid (AA) in culture media by immunoblot and immunofluorescence assays. Furthermore, we determined the viability using XTT and migration/wound healing in scratch assays. Collagen 1 secretion was quantified by specific ELISA. Primary human fibroblasts show in part a myofibroblast-like phenotype even without addition of FCS. Supplemented AA reduces migration of cultured fibroblasts with no or low concentrations of FCS. Furthermore, AA and higher concentrations of FCS in culture media lead to higher levels of collagen 1 secretion instead of procollagen I accumulation. This study provides evidence for a partial switch of primary human fibroblasts of different origin to a myofibroblast-like phenotype under common culture conditions.

Highlights

  • Fibroblasts represent a complex and versatile group of cells involved in many cellular processes in connective tissue and are derived from embryonic mesoderm

  • We investigated the influence of usual supplements to cell culture, fetal calf serum (FCS) and the antioxidant ascorbic acid (AA) on the fibroblast-to-myofibroblast differentiation of cultured primary human fibroblasts

  • To assess if different concentrations of heat inactivated FCS influence primary human fibroblasts in vitro, cells were from the adventitial layer of ascending aortic tissue and

Read more

Summary

Introduction

Fibroblasts represent a complex and versatile group of cells involved in many cellular processes in connective tissue and are derived from embryonic mesoderm. As such, they can be found in almost every tissue and organ of the body [1]. Fibroblasts are the primary cells that produce and maintain the extracellular matrix (ECM) in connective tissues [2]. Fibroblasts are involved in key processes such as tissue remodeling and wound healing [3]. Fibroblasts are central mediators in inflammation, angiogenesis, cancer, and in physiological and pathological tissue fibrosis [4]. Fibrosis can affect almost every tissue of the body and is a frequent pathological feature of

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.