Abstract

In order to cope with the impact of intelligent building-type virtual power plant on system frequency, this paper proposes a primary frequency control strategy. Firstly, a typical demand-side resource model of intelligent building-type virtual power plant is established, which considers the travel uncertainty of electric vehicles and resident’s comfort preference. Secondly, the control parameters of electric vehicles and air-conditioning loads are designed respectively, and a control strategy based on variable coefficient droop control is proposed. Finally, a simulation example verifies the effectiveness of the primary frequency regulation strategy, which can effectively reduce system frequency fluctuations while ensuring user demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.