Abstract
In this study, we analyse and compare the primary energy use and carbon dioxide (CO2) emissions associated with different insulation, cladding and frame materials for a constructed concrete frame multi-storey residential building in Sweden. Our approach consists of identifying individual materials giving the lowest primary energy use and CO2 emissions for each building envelope part and based on that, modelling different material combinations to achieve improved alternatives of the concrete frame building with the same operation energy use based on the Swedish building code or passive house criteria. We analyse the complete materials and energy chains, including material losses as well as conversion and fuel cycle losses. The analysis covers the primary energy use to extract, process, transport, and assemble the materials and the resulting CO2 emissions to the atmosphere. The results show wide variations in primary energy and CO2 emissions depending on the choice of building envelope materials. The materials for external walls contribute most to the primary energy and CO2 emissions, followed by foundation, roof and external cladding materials. The improved building alternatives with wood construction frames, wood external cladding, expanded polystyrene as foundation insulation and cellulose insulation in the external walls and roof result in about 36 - 40% lower production primary energy use and 42 – 49% lower CO2 emissions than the improved concrete alternative when achieving the same thermal performance. This study suggests that strategies for low-energy buildings should be combined with resource-efficient and low carbon materials in the production phase to mitigate climate change and achieve a sustainable built environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.