Abstract

The kinetics of primary electron transfer in membrane-bound Rhodobacter sphaeroides reaction centers (RCs) were measured on both wild-type (WT) and site-directed mutant RC's bearing mutations at the tyrosine M210 position. The tyrosine was replaced by histidine (H), phenylalanine (F), leucine (L), or tryptophan (W). A mutant with histidine at both the M210 and symmetry-related L181 positions (YM210H/FL181H) was also examined. Rates of primary charge separation were determined by both single and multiple wavelength pump−probe techniques. The time constants for the decay of stimulated emission in the membrane-bound mutant RC's were approximately 27 ps (F), 36 ps (L), 72 ps (W), 5.8 ps (H), and 4.2 ps (HH), compared with 4.6 ps in WT membrane-bound RC's. For all RC's, the decay of stimulated emission was found to be multiexponential, demonstrating that this phenomenon is not a consequence of the removal of the RC from the membrane. The source of the multiexponential decay of the primary donor excited state w...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call