Abstract

IntroductionResistance of Mycobacterium tuberculosis (MTB) to anti-tuberculosis (TB) drugs presents a serious challenge to TB control worldwide. We investigated the status of drug resistance, including multidrug-resistant (MDR) TB, and possible risk factors among newly diagnosed TB patients in Hanoi, the capital of Viet Nam.MethodsClinical and epidemiological information was collected from 506 newly diagnosed patients with sputum smear- and culture-positive TB, and 489 (96.6%) MTB isolates were subjected to conventional drug susceptibility testing, spoligotyping, and 15-locus variable numbers of tandem repeats typing. Adjusted odds ratios (aORs) were calculated to analyze the risk factors for primary drug resistance.ResultsOf 489 isolates, 298 (60.9%) were sensitive to all drugs tested. Resistance to isoniazid, rifampicin, streptomycin, ethambutol, and MDR accounted for 28.2%, 4.9%, 28.2%, 2.9%, and 4.5%, respectively. Of 24 isolates with rifampicin resistance, 22 (91.7%) were MDR and also resistant to streptomycin, except one case. Factors associated with isoniazid resistance included living in old urban areas, presence of the Beijing genotype, and clustered strains [aOR = 2.23, 95% confidence interval (CI) 1.15–4.35; 1.91, 1.18–3.10; and 1.69, 1.06–2.69, respectively). The Beijing genotype was also associated with streptomycin resistance (aOR = 2.10, 95% CI 1.29–3.40). Human immunodeficiency virus (HIV) coinfection was associated with rifampicin resistance and MDR (aOR = 5.42, 95% CI 2.07–14.14; 6.23, 2.34–16.58, respectively).ConclusionIsoniazid and streptomycin resistance was observed in more than a quarter of TB patients without treatment history in Hanoi. Transmission of isoniazid-resistant TB among younger people should be carefully monitored in urban areas, where Beijing strains and HIV coinfection are prevalent. Choosing an optimal treatment regimen on the basis of the results of drug susceptibility tests and monitoring of treatment adherence would minimize further development of drug resistance strains.

Highlights

  • Resistance of Mycobacterium tuberculosis (MTB) to anti-tuberculosis (TB) drugs presents a serious challenge to to antituberculosis (TB) control worldwide

  • Resistance of Mycobacterium tuberculosis (MTB) to antituberculosis (TB) drugs, to isoniazid (INH) and rifampicin (RMP), which results in multidrug-resistant (MDR)TB, presents a serious challenge in the control of TB worldwide [1,2]

  • 489 MTB isolates were tested for drug susceptibility

Read more

Summary

Introduction

Resistance of Mycobacterium tuberculosis (MTB) to anti-tuberculosis (TB) drugs presents a serious challenge to TB control worldwide. Resistance to isoniazid, rifampicin, streptomycin, ethambutol, and MDR accounted for 28.2%, 4.9%, 28.2%, 2.9%, and 4.5%, respectively. Factors associated with isoniazid resistance included living in old urban areas, presence of the Beijing genotype, and clustered strains [aOR = 2.23, 95% confidence interval (CI) 1.15–4.35; 1.91, 1.18–3.10; and 1.69, 1.06–2.69, respectively). Human immunodeficiency virus (HIV) coinfection was associated with rifampicin resistance and MDR (aOR = 5.42, 95% CI 2.07–14.14; 6.23, 2.34–16.58, respectively). Transmission of isoniazid-resistant TB among younger people should be carefully monitored in urban areas, where Beijing strains and HIV coinfection are prevalent. Resistance of Mycobacterium tuberculosis (MTB) to antituberculosis (TB) drugs, to isoniazid (INH) and rifampicin (RMP), which results in multidrug-resistant (MDR)TB, presents a serious challenge in the control of TB worldwide [1,2].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call