Abstract

Coenzyme Q (CoQ) is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

Highlights

  • Coenzyme Q (CoQ) is a benzoquinone molecule with a polyisoprenylated side chain that ranges from 6 to 10 isoprenyl units in length

  • Coenzyme Q is a critical component of the mitochondrial respiratory chain, the process by which cells make energy

  • We show that the failure to make Coenzyme Q due to a Pdss2 mutation is the cause of a lethal kidney disease in mice that was previously thought to result from an autoimmune process

Read more

Summary

Introduction

Coenzyme Q (CoQ) is a benzoquinone molecule with a polyisoprenylated side chain that ranges from 6 to 10 isoprenyl units in length. Mutant kd/kd homozygotes appear healthy for at least the first 8 weeks of life, but histological examination of the kidneys beginning at about 12 weeks of life reveals a mononuclear cell infiltrate and tubular dilatation with proteinaceous casts in cortical areas. Over time this extends to involve the entire kidney with resultant renal failure [3,4,5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call