Abstract
ObjectiveNeuronal primary cilia are known to be a required organelle for energy balance and leptin action. However, whether primary cilia directly mediate adaptive responses during starvation is yet unknown. Therefore, we investigated the counterregulatory roles of primary cilia, and their related leptin action in energy-depleted condition. MethodWe generated leptin receptor (LepR) neuron-specific primary cilia knockout (Ift88 KOLepR) mice. Leptin-mediated electrophysiological properties of the neurons in fasting condition were assessed using patch-clamp technique. Adaptive responses and neuroendocrine reflexes were measured by monitoring counterregulatory hormones. ResultsIn fasting state, the leptin-induced neuronal excitability and leptin homeostasis were impaired in Ift88 KOLepR. In addition, the Ift88 KOLepR exhibited aberrant fasting responses including lesser body weight loss, decreased energy expenditure, and lower heat generation compared to wild-type littermates. Furthermore, the primary cilia in LepR neurons are necessary for counterregulatory responses and leptin-mediated neuroendocrine adaptation to starvation. ConclusionOur results demonstrated that the neuronal primary cilia are crucial neuronal components mediating the adaptive counterregulatory responses to starvation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.