Abstract

Regeneration of soft tissue defects is essential for adipose tissue pathologies and disease, trauma, or injury-induced damage. Here, we show that umbilical cord blood-derived mesenchymal stem cells could potentially be tailored and used for the reconstruction of specific damaged sites. Adipogenesis can be exploited in soft tissue reconstruction. Also, primary cilia play a role in the control of adipogenesis. The adipogenic differentiation capacity of mesenchymal stem cells (MSCs) was shown to influence ciliogenesis. MSCs transfected with intraflagellar transport 88 (IFT88) small interfering RNA (siRNA), which blocks the assembly and maintenance of cilia, were examined to confirm the relationship between adipogenesis and ciliogenesis. Also, 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), calcium chelator, inhibited the ciliogenesis of MSCs in adipogenic differentiation. IFT88-knockdown led to decreased cilia formation and limitation of cilia elongation in adipogenesis. Additionally, intracellular calcium triggered cilia formation in MSCs adipogenesis. Interestingly, intracellular calcium cannot overcome the inhibition of adipogenesis caused by low numbers of cilia in MSCs. Our data suggested that ciliogenesis was negatively regulated by Wnt5a/β-catenin signaling during adipogenesis. Thus, we suggest that calcium induction triggers adipogenesis and ciliogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.