Abstract

The evolution during carbonization treatments of a 100% anisotropic pitch (pitch C) was compared to that of Ashland 240 (100% γ resins). The anisotropic pitch C results from a gas-sparge preparation leading to a composition of 93% β resins (QS-TI) and 7% γ resins (QS). It is made of a major component (QS-TI), in which droplets (100–300 nm in size) partially toluene soluble are distributed. The physicochemical, textural and microtextural evolutions of the two pitches were studied. During pitch C primary carbonization, anisotropic droplets grow by coalescence, then decompose into Brooks and Taylor mesophase spheres suspended in isotropic drops. These drops develop at the expense of the anisotropic matrix by a continuous regeneration of the small anisotropic droplets which feed the isotropic drops by diffusion process. Then inside these drops, mesophase spheres grow then coalesce and the behaviour of a conventional pitch is restored. These various molecular associations are due to absence of chemical events below 450 °C, leading to the global mass spectrum being constant. At 500 °C the material is homogeneously anisotropic though plastic, the metastable system is destroyed and the evolution of conventional pitches is recovered, i.e. above 550 °C macropores develop up to solidification at 600 °C (semi-coke stage).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.