Abstract

A characteristic pattern of acetylcholinesterase (AChE) activity is expressed transiently in primary auditory cortex (cortical area 41) of developing laboratory rats during early postnatal life. This AChE activity occurs as a dense plexus in cortical layer IV and the deep part of layer III. This transient band of AChE activity is first detected by histochemical techniques on postnatal day (P) 3, reaches peak intensity at approximately P8–10, and declines to form the adult pattern by P23. The ventral nucleus of the medial geniculate body of the thalamus also displays prominent, and transient, staining for AChE. This intense staining for AChE, found within neuronal somata and neuropil, is detected at the time of birth, reaches peak intensity around P8, and declines to adult levels by P16. The areal and laminar patterns of the transient band of AChE activity in temporal cortex correspond to the patterns of anterograde transneuronal labeling of geniculocortical terminals following injection of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the inferior colliculus. Placement of lesions that include the medial geniculate nucleus or the geniculocortical axons results in a marked decrease in AChE staining in thalamorecipient layers of auditory cortex. Placement of lesions that include the medial globus pallidus reduce AChE staining of some axons in temporal cortex of developing rats, but the dense band of AChE in layers III and IV remains. Placement of lesions in the inferior colliculus in newborn animals results in marked decrease in AChE staining in cells of the ipsilateral ventral medial geniculate nucleus and in ipsilateral auditory cortex of developing pups. These data indicate that transiently expressed AChE activity is characteristic of geniculocortical neurons, including their somata in the medial geniculate body and their terminal axons in primary auditory cortex. This AChE activity is expressed early in postnatal development, probably during the time when thalamocortical axons are proliferating in cortical layer IV and forming synaptic contacts with cortical neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call