Abstract

Particle image velocimetry measurements and time-resolved visualization are used for the reconstruction of the Kelvin–Helmholtz vortex passing in the near field of a round jet and of a lobed jet. For the round jet, the entrainment is produced in the braid region, where streamwise structures develop. In the Kelvin–Helmholtz ring, entrainment is dramatically affected by the attenuation of the streamwise structures. As for the lobed jet, the special geometry introduces a transverse shear leading to a breakdown of the Kelvin–Helmholtz structures into “ring segments.” Streamwise structures continuously develop at the resulting discontinuity regions and control the lobed jet self-induction. In this case, the entrainment rate is less affected by the primary structures dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.