Abstract

In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3′-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5′-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs.

Highlights

  • RNA silencing directed by miRNAs, short interferingRNAs and PIWI-interacting RNAs is involved in regulation of gene expression and chromatin states and in defense against invasive nucleic acids such as transposons, transgenes and viruses [1,2,3]

  • In Arabidopsis thaliana infected with DNA viruses, all four Dicer-like (DCL) enzymes are involved in processing of viral siRNAs (vsRNAs) duplexes from longer double-stranded RNA precursors: DCL4 and DCL1 generate 21-nt class, DCL2 generates 22-nt class and DCL3 generates 24-nt class; 21-nt and 24-nt vsRNAs accumulate at higher levels than 22-nt vsRNAs [6,7,8]

  • In C. elegans, RDR-dependent RNA polymerase (RDR)-dependent amplification of secondary siRNAs appears to reinforce silencing triggered by primary siRNAs which are processed by dicer from endogenous or exogenous double-stranded RNA (dsRNA) [61,62]

Read more

Summary

Introduction

RNA silencing directed by miRNAs, short interfering (si)RNAs and PIWI-interacting RNAs is involved in regulation of gene expression and chromatin states and in defense against invasive nucleic acids such as transposons, transgenes and viruses [1,2,3]. In Arabidopsis thaliana infected with DNA viruses, all four Dicer-like (DCL) enzymes are involved in processing of vsRNA duplexes from longer double-stranded RNA (dsRNA) precursors: DCL4 and DCL1 generate 21-nt class, DCL2 generates 22-nt class and DCL3 generates 24-nt class; 21-nt and 24-nt vsRNAs accumulate at higher levels than 22-nt vsRNAs [6,7,8]. In RNA virus-infected Arabidopsis, DCL4-dependent 21-nt vsRNAs and/or DCL2-dependent 22-nt vsRNAs are the most abundant species, whereas DCL3-dependent 24-nt vsRNAs accumulate at much lower levels [7,9,10]. This reflects the difference in viral life cycles: DNA viruses transcribe their genomes in the nucleus, whereas RNA viruses are generally restricted to the cytoplasm. RDR6 is involved in production of secondary siRNAs from some protein-coding genes targeted by

Author Summary
Findings
Materials and Methods

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.