Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by early metastatic spread in more than 50% of patients. In this study, we sought to understand the migratory properties of (non)metastatic PDAC cells and determine whether the migration of cancer stem cell (CSC) populations accounts for the aggressive nature of this disease. The migratory abilities of primary and metastatic PDAC cell lines were investigated using a microfluidic device and time-lapse photography. The velocity, time of delay of mobilization, and number of migratory cells were analyzed. Cancer stem cell subpopulations were isolated by fluorescence-activated cell sorting and their migratory properties compared with their non-CSC counterparts. Primary cancer cells exhibited higher velocities, greater number of migratory cells, and a shorter time of delay of mobilization in comparison to metastatic cell lines. Characterization of CSC populations revealed primary PDAC cell lines were composed of fewer CD133 and CD24CD44 CSC subpopulations than metastatic cells. Moreover, migratory analysis of CSC subpopulations revealed lower velocities, fewer migratory cells, and a greater time of delay of mobilization than non-CSC. Primary cancer cells demonstrate enhanced migratory abilities in comparison to metastatic PDAC cells. Those differences may result from lower CSC subpopulations in primary cells because CSC populations demonstrated impaired migratory abilities in contrast to non-CSC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.