Abstract

The primary creep behaviour of a high temperature near α-Ti alloy Ti6242Si has been investigated in the temperature range from 500 to 625°C, and the stress range from 80 to 450 MPa. The results are analysed in terms of the dependencies of stress on strain (strain hardening) and on strain rate (strain rate sensitivity). Furthermore, full unloading experiments were conducted in order to gain additional information as to the nature of primary creep. It is shown that primary creep can be described by an athermal component, strain hardening, with a mean strain hardening coefficient of 0.37, and a thermally activated component, strain rate sensitivity, with a strain rate sensitivity coefficient suggesting a mechanism based on climb controlled recovery. This is confirmed by the activation energy of 259 kJ/mol determined at different stresses, which is similar to the activation energy of Ti self diffusion in α-Ti. The anelastic strain obtained on full unloading was analysed in its fast stage in a similar way. The kinetics of anelastic creep and its activation energy are in many aspects very similar to those of primary creep. It is thought that, in the stress and temperature range investigated, primary creep is to a relatively high extent anelastic in nature, and is controlled by the climb controlled bow out of pinned dislocation segments, particularly dislocations pinned at lath boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call