Abstract

In this paper a new variant of accelerated gradient descent is proposed. The proposed method does not require any information about the objective function, uses exact line search for the practical accelerations of convergence, converges according to the well-known lower bounds for both convex and non-convex objective functions and possesses primal-dual properties. We also provide a universal version of said method, which converges according to the known lower bounds for both smooth and non-smooth problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.