Abstract

Experimental observations of simultaneous activity in large cortical areas have seemed to justify a large network approach in early studies of neural information codes and memory capacity. This approach has overlooked, however, the segregated nature of cortical structure and functionality. Employing graph-theoretic results, we show that, given the estimated number of neurons in the human brain, there are only a few primal sizes that can be attributed to neural circuits under probabilistically sparse connectivity. The significance of this finding is that neural circuits of relatively small primal sizes in cyclic interaction, implied by inhibitory interneuron potentiation and excitatory inter-circuit potentiation, generate relatively long non-repetitious sequences of asynchronous primal-length periods. The meta-periodic nature of such circuit interaction translates into meta-periodic firing-rate dynamics, representing cortical information. It is finally shown that interacting neural circuits of primal sizes 7 or less exhaust most of the capacity of the human brain, with relatively little room to spare for circuits of larger primal sizes. This also appears to ratify experimental findings on the human working memory capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call