Abstract

We propose a family of search directions based on primal-dual entropy in the context of interior-point methods for linear optimization. We show that by using entropy-based search directions in the predictor step of a predictor-corrector algorithm together with a homogeneous self-dual embedding, we can achieve the current best iteration complexity bound for linear optimization. Then, we focus on some wide neighborhood algorithms and show that in our family of entropy-based search directions, we can find the best search direction and step size combination by performing a plane search at each iteration. For this purpose, we propose a heuristic plane search algorithm as well as an exact one. Finally, we perform computational experiments to study the performance of entropy-based search directions in wide neighborhoods of the central path, with and without utilizing the plane search algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call