Abstract

Multiplicative programming problems (MPPs) are global optimization problems known to be NP-hard. In this paper, we employ algorithms developed to compute the entire set of nondominated points of multi-objective linear programmes (MOLPs) to solve linear MPPs. First, we improve our own objective space cut and bound algorithm for convex MPPs in the special case of linear MPPs by only solving one linear programme in each iteration, instead of two as the previous version indicates. We call this algorithm, which is based on Benson’s outer approximation algorithm for MOLPs, the primal objective space algorithm. Then, based on the dual variant of Benson’s algorithm, we propose a dual objective space algorithm for solving linear MPPs. The dual algorithm also requires solving only one linear programme in each iteration. We prove the correctness of the dual algorithm and use computational experiments comparing our algorithms to a recent global optimization algorithm for linear MPPs from the literature as well as two general global optimization solvers to demonstrate the superiority of the new algorithms in terms of computation time. Thus, we demonstrate that the use of multi-objective optimization techniques can be beneficial to solve difficult single objective global optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.