Abstract

The impact of hepatic glucose concentration on the sympathetic response to progressive hypoglycemia was examined in chronically cannulated conscious male dogs (n = 6). Graded hypoglycemia was induced via peripheral insulin infusion (30 pmol.kg-1.min-1) with either peripheral (PER) or portal (POR) glucose infusion. Over the 260-min experimental period, arterial glycemia was adjusted from 5.2 +/- 0.1 to 2.5 +/- 0.1 mM in decrements of approximately 0.5 mM every 40 min. Arterial glycemias were not significantly different between PER and POR at any measured level. However, hepatic glycemia was significantly elevated at all times during POR (8.4 +/- 0.8 to 3.4 +/- 0.2 mM) when compared to PER (5.2 +/- 0.2 to 2.5 +/- 0.1 mM). Plasma epinephrine values were significantly greater during PER vs. POR at all arterial glycemias below 4.0 mM. At the lowest level of arterial glycemia studied (2.5 +/- 0.2 mM) the epinephrine response above basal was 3-fold greater for PER (8.7 +/- 1.7 nM) when compared to POR (2.6 +/- 0.6 nM) (P < 0.01). Plasma norepinephrine results were similar for the two protocols, with PER demonstrating a 3-fold greater response above basal when compared to POR at 2.5 mM arterial glycemia (P < 0.05). While the sympathetic response was markedly different between protocols when expressed as a function of arterial glycemia, when expressed as a function of hepatic glycemia this discrepancy was largely eliminated. This latter observation supports the liver as the primary locus for glycemic detection relevant to the sympathoadrenal response when hypoglycemia develops slowly--i.e., over a period of 2-3 h. A comparison of the current findings with our previous observations suggests that the hepatic glucosensors may play a greater role in hypoglycemic counterregulation as the rate of fall in glycemia is less.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.