Abstract
Priestley duality can be used to study subalgebras of Heyting algebras and related structures. The dual concept is that of congruence on the dual space and the congruence lattice of a Heyting space is dually isomorphic to the subalgebra lattice of the dual algebra. In this paper we continue our investigation of the congruence lattice of a Heyting space that was undertaken in [10], [8] and [12]. Our main result is a characterization of the modularity of this lattice (Theorem 2.12). Partial results about its complementedness are also given, and among other things a characterization of those finite Heyting algebras with a complemented subalgebra lattice (Theorem 3.5).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.