Abstract

Abstract Bayesian agents, argues Belot (2013), are orgulous: they believe in inductive success even when guaranteed to fail on a topologically typical collection of data streams. Here we shed light on how pervasive this phenomenon is. We identify several classes of inductive problems for which Bayesian convergence to the truth is topologically typical. However, we also show that, for all sufficiently complex classes, there are inductive problems for which convergence is topologically atypical. Lastly, we identify specific topologically typical collections of data streams, observing which guarantees convergence to the truth across all problems from certain natural classes of effective inductive problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.