Abstract
In this paper, we investigate the pricing of variance swaps under a Markovian regime-switching extension of the Schöbel–Zhu–Hull–White hybrid model. The parameters of this model, including the mean-reversion levels and the volatility rates of both stochastic interest rate and volatility, switch over time according to a continuous-time, finite-state, observable Markov chain. By utilizing techniques of measure changes, we separate the interest rate risk from the volatility risk. The prices of variance swaps and related fair strike values are represented in integral forms. We illustrate the practical implementation of the model by providing a numerical analysis in a two-state Markov chain case, which shows that the effect of both stochastic interest rate and regime-switching is significant in the pricing of variance swaps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.