Abstract

This work addresses the problem of optimal pricing and hedging of a European option on an illiquid asset Z using two proxies: a liquid asset S and a liquid European option on another liquid asset Y. We assume that the S-hedge is dynamic while the Y-hedge is static. Using the indifference pricing approach, we derive a Hamilton–Jacobi–Bellman equation for the value function. We solve this equation analytically (in quadrature) using an asymptotic expansion around the limit of perfect correlation between assets Y and Z. While in this paper we apply our framework to an incomplete market version of Merton’s credit-equity model, the same approach can be used for other asset classes (equity, commodity, FX, etc.), e.g. for pricing and hedging options with illiquid strikes or illiquid exotic options.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.