Abstract
In this contribution we study the problem of retrieving a risk neutral probability (RNP) in an incomplete market, with the aim of pricing non-traded assets and hedging their risk. The pricing issue has been often addressed in the literature finding an RNP with maximum entropy by means of the minimization of the Kullback-Leibler divergence. Under this approach, the efficient market hypothesis is modelled by means of the maximum entropy RNP. This methodology consists of three steps: firstly simulating a finite number of market states of some underlying stochastic model, secondly choosing a set of assets—called benchmarks—with characteristics close to the given one, and thirdly calculating an RNP by means of the minimization of its divergence from the maximum entropy distribution over the simulated finite sample market states, i.e. from the uniform distribution. This maximum entropy RNP must exactly price the benchmarks by their quoted prices. Here we proceed in a different way consisting of the minimization of a different divergence resulting in the total variation distance. This is done by means of a two steps linear goal programming method. The calculation of the super-replicating portfolios (not supplied by the Kullback-Leibler approach) would then be derived as solutions of the dual linear programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.