Abstract

This paper applies the fast Fourier transform (FFT) approach, within the Black-Scholes framework, to the valuation of options whose time to maturity can be extended to a future date (extendible options). We determine the valuation of the extendible options as sums of expectations of indicator functions, leading to a semianalytic expression for the value of the options over a range of strikes. Compared to Monte Carlo simulation, numerical examples demonstrate that the FFT is both computationally more efficient and higher in accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.