Abstract
We obtain a closed-form solution for the double-Laplace transform of Asian options under the hyper-exponential jump diffusion model. Similar results were available previously only in the special case of the Black-Scholes model (BSM). Even in the case of the BSM, our approach is simpler as we essentially use only Itô's formula and do not need more advanced results such as those of Bessel processes and Lamperti's representation. As a by-product we also show that a well-known recursion relating to Asian options has a unique solution in a probabilistic sense. The double-Laplace transform can be inverted numerically via a two-sided Euler inversion algorithm. Numerical results indicate that our pricing method is fast, stable, and accurate; and it performs well even in the case of low volatilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.