Abstract

This paper extends the Fourier-cosine (COS) method to the pricing and hedging of variable annuities embedded with guaranteed minimum withdrawal benefit (GMWB) riders. The COS method facilitates efficient computation of prices and hedge ratios of the GMWB riders when the underlying fund dynamics evolve under the influence of the general class of Lévy processes. Formulae are derived to value the contract at each withdrawal date using a backward recursive dynamic programming algorithm. Numerical comparisons are performed with results presented in Bacinello et al. [Scand. Actuar. J., 2014, 1–20], and Luo and Shevchenko [Int. J. Financ. Eng., 2014, 2, 1–24], to confirm the accuracy of the method. The efficiency of the proposed method is assessed by making comparisons with the approach presented in Bacinello et al. [op. cit.]. We find that the COS method presents highly accurate results with notably fast computational times. The valuation framework forms the basis for GMWB hedging. A local risk minimisation approach to hedging intra-withdrawal date risks is developed. A variety of risk measures are considered for minimisation in the general Lévy framework. While the second moment and variance have been considered in existing literature, we show that the Value-at-Risk (VaR) may also be of interest as a risk measure to minimise risk in variable annuities portfolios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.