Abstract

ABSTRACTRecently, several numerical methods have been proposed for pricing options under jump-diffusion models but very few studies have been conducted using meshless methods [R. Chan and S. Hubbert, A numerical study of radial basis function based methods for options pricing under the one dimension jump-diffusion model, Tech. Rep., 2010; A. Saib, D. Tangman, and M. Bhuruth, A new radial basis functions method for pricing American options under Merton's jump-diffusion model, Int. J. Comput. Math. 89 (2012), pp. 1164–1185]. Indeed, only a strong form of meshless methods have been employed in these lectures. We propose the local weak form meshless methods for option pricing under Merton and Kou jump-diffusion models. Predominantly in this work we will focus on meshless local Petrov–Galerkin, local boundary integral equation methods based on moving least square approximation and local radial point interpolation based on Wendland's compactly supported radial basis functions. The key feature of this paper is applying a Richardson extrapolation technique on American option which is a free boundary problem to obtain a fixed boundary problem. Also the implicit–explicit time stepping scheme is employed for the time derivative which allows us to obtain a spars and banded linear system of equations. Numerical experiments are presented showing that the presented approaches are extremely accurate and fast.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call