Abstract

We develop a new method for pricing American options. The main practical contribution of this paper is a general algorithm for constructing upper and lower bounds on the true price of the option using any approximation to the option price. We show that our bounds are tight, so that if the initial approximation is close to the true price of the option, the bounds are also guaranteed to be close. We also explicitly characterize the worst-case performance of the pricing bounds. The computation of the lower bound is straightforward and relies on simulating the suboptimal exercise strategy implied by the approximate option price. The upper bound is also computed using Monte Carlo simulation. This is made feasible by the representation of the American option price as a solution of a properly defined dual minimization problem, which is the main theoretical result of this paper. Our algorithm proves to be accurate on a set of sample problems where we price call options on the maximum and the geometric mean of a collection of stocks. These numerical results suggest that our pricing method can be successfully applied to problems of practical interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.